Guided bone regeneration procedure using a mixture of micro–macroporous biphasic calcium phosphate and freeze-dried allograft in esthetic region: A case report

Introduction

Osseointegration is important in the functional aspect, however, esthetics is also important, especially in the maxillary anterior region. An adequate surgical technique is necessary in maxillary anterior implantation in order to maintain the bone volume and create a satisfactory emergence profile. Anesthetic risk assessment is required for this. To augment the severe bone loss and reconstruct periodontal apparatus, the Guided Bone Regeneration (GBR) has been commonly used. GBR is a surgical procedure that uses barrier membranes to direct growth of new bone at sites having insufficient volumes or dimensions for function or prosthesis placement. The principle of GBR is based on the principles of guided tissue regeneration. By selectively excluding epithelium and connective tissue with the use of bone grafting and barrier materials, bone is “guided” into the desired position.

GBR consists of bone graft materials and membrane. There are various bone graft materials such as autogenous, allograft, xenograft and synthetic bone graft. The autogenous bone graft is known to have good osteogenesis, osteoinduction and osteoconduction. However, it carries the difficulty in having to perform an additional surgery (the donor site and recipient site).

In consequence, synthetic and alloplastic bone graft materials are being developed and applied these days in clinics. In this case, Micro-macroporous Biphasic Calcium Phosphate (MBCP) (MBCP™, Biomatlante, Sarl, France) and freeze-dried allograft (FDA) (OraGraft®, LifeNet, Virginia beach, Virginia, U.S.A.) were used with an absorbable collagenous bilayer membrane (BioGide™, Geistlich Pharma AG, Wolhusen, Switzerland) in the GBR procedure in the maxillary anterior tooth. They were selected for its successful results and clinical advantages.

II. Case Report

Age/Sex: 44 years old/Male
C.C: Suffering from severe mobility and pus discharge of left central incisor
Medical Hx: no specific general risk assessment
P.I: Mobility(+++) on left central incisor
with full probing depth
with pus discharge

<table>
<thead>
<tr>
<th>Probing Chart (mm)</th>
<th>Left central incisor</th>
<th>Right central incisor</th>
<th>Right lateral incisor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buccal (MMD)</td>
<td>445</td>
<td>Full probing depth</td>
<td>433</td>
</tr>
<tr>
<td>Palatal (MMD)</td>
<td>435</td>
<td>Full probing depth</td>
<td>433</td>
</tr>
</tbody>
</table>

Corresponding author: Seong-Ho Choi
Department of Periodontology, Research Institute for Periodontal Regeneration, College of Dentistry, Yonsei University, 134 Shinchon-dong, Seodaemun-gu, Seoul, 120-752, Korea
E-mail: shchoi726@yuhs.ac
Received November 9, 2009 Revised December 14, 2009 Accepted December 16, 2009
(1) Diagnosis: Generalized chronic moderate periodontitis with hopeless tooth on left central incisor

(2) Risk Assessment
The patient had a midline discrepancy shifted to the left of 1mm. A labioversion existed on the left lateral incisor and there was a recessed gingival line (Fig. 2A). The occlusal plane was flat and the contact point position was middle and there was an open embrasure. The patient had a medium smile line. The general risk assessment of this patient fell under high esthetic risk factors. The patient had a healthy and an intact immune system. He was a non-smoker and the patient’s esthetic expectation was low. The lip line was medium and the gingival biotype was medium-scalloped and medium thick. The shape of tooth crown was triangular and the infection at implant site had been chronic for he had severe mobility and pus discharge. The bone level at adjacent teeth was < than 5mm to contact point and the restorative status of neighboring teeth was virgin, meaning it was unrestored. The width of the edentulous span was ≥ than 7mm. There was horizontal and vertical bone deficiency (Fig. 2B)

(3) Material & Surgical Procedure
The surgical procedure took place 8 weeks after extraction. An early implantation was performed. The M-D distance was 8mm (Fig. 3A) and B-P width was 6mm (Fig. 3B). Eight weeks after extraction, implant was carefully inserted into bone in the anterior portion (Fig. 4D). The labial plate resorption was grafted with MBCP (0.25g) and FDA (0.25g). The bone graft was covered with an absorbable collagenous bilayer membrane. It was submerged for over 6 months (Fig. 4E).
Guided bone regeneration procedure using a mixture of micro-macroporous biphasic calcium phosphate and freeze-dried allograft in esthetic region: A case report

B. Occlusal view.
Fig 3. Preoperative clinical view.
Many clinicians contemplate on selecting the proper technique when there is severe bone loss. When selecting an ideal material for GBR, the following requirements must be considered: wound stabilization, space creation and maintenance, protection of underlying blood clot, and the ability to exclude unwanted tissues or cells (connective tissue and epithelium). Many studies have reported success in using barriers to augment bone prior to or after implant placement. Nonresorbable membranes such as Millipore filter, polytetrafluoroethylene and absorbable membranes such as collagen, polylactic acid, polyglycolide and lactic copolymer are usually used in GBR.

There have been many reports on GBR procedures utilizing collagen membranes. Collagen membranes have been reported to be superior to non-absorbable membranes with regard to healing. A higher incidence of dehiscence, membrane exposure, and/or premature membrane removal was noted in non-absorbable membranes. Parodi et al. used collagen and bioresorbable collagen sponges and there was an increase of 2.49 mm of bone height. Thus, in this case, bioabsorbable collagen membrane was used due to the fact that it fulfills all of the above advantages.

The autogenous bone graft was not used in this case due to its limitation of additional surgery needed when compared with other bone graft materials. The synthetic and allograft bone substitutes were used instead. In this case, MBCP and FDA were used along with absorbable collagenous bilayer membrane to hold the graft material. MBCP is consisted of a ratio of HA and β-TCP 60 : 40. This is the ideal ratio for bone regeneration. Hydroxyapatite is slow in resorption compared to β-TCP. The HA dissolves slowly in the body and acts as a scaffold until it becomes tissue. The β-TCP has a strong dissolving characteristic which resolves fast and thus, accelerates bone formation. MBCP carries many advantages compared to other bone graft materials in that the total porosity is 70% while the others are 50–70%. The micropores are less than 10 microns, around 20–30% whereas the others are 3–6%. The macropores are larger than 600 microns, around 70–80% while the others are 94–97%. In Gautier et al.’s study, MBCP showed less resorption compared to Injectable Calcium Substitute (IBS). FDA is donated from human tissue. It is predictable and consistent. It is cheaper than other bone graft materials and is provided in various sizes both in freeze-dried and demineralized freeze-dried allograft type. Block et al. used FDA and there was an increase of 5–8 mm of bone height. Sterilized FDA resorbs earlier than MBCP, therefore in consequence, two types of bone graft materials were mixed together. Thus, the bone graft materials including the membrane were selected for the above reasons.

Thus, in order to achieve satisfactory results in the esthetic region, it is important to carefully diagnose and select appropriate bone graft materials prior to surgery. For the above reasons being, MBCP and FDA were used in the esthetic region in this case to achieve successful esthetic results. There was absolutely no adverse effect during healing and the patient showed great satisfaction concerning the harmony between the adjacent periodontal and bony structures (Fig. 5 C,D).
IV. CONCLUSION

It can be concluded that GBR with ideal bone graft materials such as MBCP and FDA with absorbable collagenous bilayer membrane show successful results in the esthetic region.

REFERENCES

Fig 5. A. Postoperative periapical view.
 B. 1 month postoperative panoramic view.
 C. 11 months postoperative clinical view.
 D. 11 months postoperative panoramic view.
심미적 부위에 Micro-macroporous biphasic calcium phosphate와 freeze-dried allograft를 이용한 골재생술: 증례 발표

최정유, 장용주, 엄유정, 정의원, 김창성, 김지환, 김성태, 박영범, 심준성, 문홍석, 최성호

1연세대학교 치과대학 치주과학과, 치주조직재생연구소
2연세대학교 치과대학 보철과학과실

Key words: 골유도재생술, 상악 증결치, 임프란트, 원수성 콜라겐